Книга "Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи" (С.Равичандиран)
Глубокое обучение с подкреплением (Reinforcement Learning) - самое популярное и перспективное направление искусственного интеллекта.
Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением.
Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что «страшные» аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL.
Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта.
В этой книге вы:
- Познакомитесь с основами методов, алгоритмов и элементов RL
- Обучите агента с помощью OpenAI Gym и Tensorflow
- Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD
- Научитесь решать проблемы многоруких бандитов
- Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN
- Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom
- С помощью DDPG научите агентов играть в Lunar Lander
- Отправите агента на автогонки, используя метод DQN
1 | Краткое наименование | Книга "Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи" (С.Равичандиран) |
---|---|---|
2 | Описание | Глубокое обучение с подкреплением (Reinforcement Learning) - самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что «страшные» аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL. Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта. В этой книге вы: - Познакомитесь с основами методов, алгоритмов и элементов RL - Обучите агента с помощью OpenAI Gym и Tensorflow - Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD - Научитесь решать проблемы многоруких бандитов - Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN - Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom - С помощью DDPG научите агентов играть в Lunar Lander - Отправите агента на автогонки, используя метод DQN |
3 | Размеры упаковки (измерено в НИКСе) | 23.3 x 16.6 x 1.4 см |
4 | Вес брутто (измерено в НИКСе) | 0.42 кг |
5 | Автор | Равичандиран С. |
6 | Серия | Библиотека программиста |
7 | ISBN | 978-5-4461-1251-7 |
8 | Количество страниц | 320 |
9 | Год издания | 2020 |
10 | Обложка | Мягкая обложка |
11 | Издательство | ПИТЕР |
12 | Рекомендуемый возраст | 16+ |
13 | Торклиз/Инфо:ПИТЕР_vndr_site_краткое_описание | Глубокое обучение с подкреплением (Reinforcement Learning) - самое популярное и перспективное направление искусственного интеллекта. Практическое изучение RL на Python поможет освоить не только базовые, но и передовые алгоритмы глубокого обучения с подкреплением. Вы начнете с основных принципов обучения с подкреплением, OpenAI Gym и TensorFlow, познакомьтесь с марковскими цепями, методом Монте-Карло и динамическим программированием, так что «страшные» аббревиатуры DQN, DRQN, A3C, PPO и TRPO вскоре перестанут вас пугать. Вы узнаете об агентах, которые учатся на человеческих предпочтениях, DQfD, HER и многих других последних достижениях RL. Прочитав книгу, вы приобретете знания и опыт, необходимые для реализации обучения с подкреплением и глубокого обучения с подкреплением в реальных проектах, и войдете в мир искусственного интеллекта. В этой книге вы: - Познакомитесь с основами методов, алгоритмов и элементов RL - Обучите агента с помощью OpenAI Gym и Tensorflow - Освоите марковские процессы принятия решений, оптимальность Беллмана и обучение TD - Научитесь решать проблемы многоруких бандитов - Овладеете алгоритмами глубокого обучения, такими как RNN, LSTM и CNN - Создадите интеллектуальных агентов с помощью алгоритма DRQN, которые смогут играть в Doom - С помощью DDPG научите агентов играть в Lunar Lander - Отправите агента на автогонки, используя метод DQN |
Xарактеристики, комплект поставки и внешний вид данного товара могут отличаться от указанных или могут быть изменены производителем без отражения в каталоге.
Производитель/Адрес: Планет Технолоджи Корпорейшн. 11Ф., Не 96МетроМинqуан РД., К Синьдянь Н., Новый Тайбэй 231, Тайвань (Р. О. Ц)С. АОС Интернешнл (Европ) БВ, Барбара Строззилан 386 НЛ-1083 Амстердам, НидерландыAOC International (Europe) BV, Barbara Strozzilaan 386 NL-1083 HN Amsterdam The Netherlands Страна производства: Китай Импортер: ООО Гигамаркет г.Минск, ул. Грибоедова 1-191В папку сравнения